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Abstract

Monte Carlo methods were used to investigate the effect of misspecification of the

second-level in a two-level hierarchical linear model. Sample composition, heterogeneity of the

goup size, level of intraclass correlation, and correlation between second-level predictors were

manipulated. Twenty data sets were generated for each condition. Each data set was analyzed

rfne times with the ULM program, corresponding to the correct model and eight types of

misspecification.

The error variance (12 was estimated accurately for all model specifications. For the

correct second-level model, regression parameters 7 and the covariance matrix of the second-

level errors 7 were estimated accurately, although estimates were slightly biased for some levels

of the sample composition manipulation. Misspecifications that failed to include a predictor had

a larger effect than those which erroneously included an effect.

Reactivity was assessed by examining parameters of equations which were correctly

specified, although another equation in the model was misspecified. HLM showed little

reactivity. Only one of the misspecified models yielded 7 estimates that were significantly

farther, on average, from the generating parameters than were those of the correctly specified

model. Similar results were found for the root mean square residual between the generating

and estimated 7.
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Hierarchical Data

Much educational research takes place in hierarchically ordered settings. Naturally,

pupils are found grouped into classes, classes occur within schools, schools within districts,

districts within counties and states, and states within nations. Attempts to study or to modify

educational practice may occur at any of these levels, and the targets of these efforts often occur

at other levels. Traditionally, the hierarchical nature of educational data has been difficult to

accommodate. One of the chief limitations was that standard statistical techniques do not

adequately account for the dependencies in hierarchical data. Faced with this dilemma,

researchers chose one of two options. Either they ignored the dependencies within the data and

analyzed individual data points, or they aggregated data to higher levels of the hierarchy and

analyzed means. The first strategy leads to underestimation of variance estimates (see

Raudenbush, 1988 and the references cited therein), and can consequently yield grossly distorted

significance tests. The second strategy leads to aggregation bias, in that relationships (e.g.,

correlations) of means may be markedly different from the same relationships based on the

unaggregated variables (again, see Raudenbush, 1988 and the references cited therein).

Furthermore, aggregation changes the meaning of variables; the average class achievement score

does not represent the same educational process as individual achievement.

In the 1980's several papers proposed methodologies for hierarchical data. Specifically,

Aitkin and Longford (1986), DeLeeuw and Kreft (1986), Goldstein (1986), Mason, Wong, and

Entwisle (1984), Raudenbush (1988), and Raudenbush and Bryk (1986) all proposed methods of

estimating effects within hierarchical contexts. These approaches enabled researchers to model

educational processes at several levels of aggregation thereby addressing issues of aggregation

bias, efficient estimation of effects, and individual by setting interactions (Raudenbush, 1988).
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This paper focuses on the two-level hierarchical linear model utilized by the HLM

progam (Bryk, Raudenbush, Seltzer, & Congdon, 1989). For consistency, we adopt their

notation. The model begins with the first-level--a within-group multiple regression model to

predict the outcome variable:

y" = (1)

in which the outcome for person i-in group j, yij, is a function of an individual's characteristics.

Ili; is a normally distributed (iid over persons and groups) error term. fij is a vector of

regression coefficients that are considered to be random effects. For example, within a school,

students' math achievement could be predicted by student SES and ethnicity (Lee, 1986). The

second-level, between-group model is given by:

t)j = Wjy + 1:13 (2)

in which the parameters from the first-level model are functions of group-level characteristics.

For example, the SES to achievement relationship could be a function of school sector (i.e.,

public or private, see Lee, 1986). The I.Jj terms are assumed to be independent of Rij, but the .

Uj for different 13's are not assumed to be independent of each other. The Uj terms are jointly

multivariate normal with mean vector 0 and covariance matrix T. The vector of y's are usually

considered to be fixed effects. It should be noted that the data matrices Xij and Wj are specially

structured to accommodate the hierarchical nesting of the data (see Strenio, Weisberg, & Bryk,

1983)

Estimation of hierarchical models is complex. The HLM progam (Bryk et al., 1989)

uses an empirical Bayes approach for estimating structural parameters. Variance estimates are

obtained via the expectation-maximization (EM) method (see Dempster, Laird, & Rubin, 1977).
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When these approaches are combined, they yield full information maximum likelihood estimates

of fixed and random effects (see Dempster, Rubin, & Tsutakawa, 1981). Technical details may

be found hi Raudenbush and Biyk (1985), Bryk et al. (1989), and Bryk and Raudenbush (1992).

As hierarchical linear models gain wider use in applied research, it is important to

examine their properties in order to properly evaluate the empirical applications of the models.

Currently, hierarchical linear models are being used to inform educational practice pertinent to

a wide variety of issues such ar school effectiveness (Aitken & Longford, 1986), school policy

(Raudenbush & Bryk, 1986), and individuals' growth in learning (Bryk & Raudenbush, 1987).

Such studies usually employ pre-existing, non-experimental data. Substantive inferneces in such

contexts are problematical. With hierarchical analyses the situation is further exacerbated by the

fact that imperfectly specified linear models are posited for at least two levels of aggregation

and estimated with full information methods. Given this combination of complexity and full

information estimation, many researchers have worried that such models may be very reactive,

i.e., that the addition or deletion of one or two predictors will lead to very different estimates of

all other effects. If this is the case, hierarchical analyses would be poor tools for informing

educational policy and practice. The pi ...,ent study examines how prone hierarchical linear

models are to reactivity;Under what conditions are estimates robust to misspecification?

Model Misspecification

Some of the effects of model misspecification may be guessed from a general knowledge

of multiple regression. For the purposes of discussion, assume that this equation:

= Oci lq Wiq 2q W2q pq Wpq (3)

represents a regular, single-level multiple regression. Consider the effect of incorrectly omitting
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a predictor W., from the prediction of 13 (i.e., setting 7, = 0). We know that the effect of this

misspecification depends on the correlation of W., with other predictors WI, . If W. is

uncorrelated with other predictors, the effect will be to reduce le by an amount directly

proportional to the correlation between /3 and W.3 , and the other parameters, -y, , will be

unaffected. On the other hand, if W., is correlated with WI, , It2 will not decrease as much, but

-44 will increase or decrease, depending on the sign of the correlation.

In the HLM context, this intuitive analyses is complicated by the nature of the model. if3c,

is not an observed variable, it is a regression coefficient and its value depends on the predictor

variables in the first-level equation. In addition, the errors in the second-level model are not

independent but correlated; misspecification in one equation may affect estimates in other

equations. Because HLM employs a full information technique of estimation, a single change in

specification can, in principle, have effects on every other parameter. Bryk and Raudenbush

(1992) describe several features which may affect the estimates of hierarchical linear model

parameters. Specifically, they demonstrate that the parameters throughout the model may be

affected by a single misspecification at the second-level of the model.

To investigate the reactivity of HLM, we conducted a simulation study. The levels of

conditions which were crossed were chosen to represent a range of conditions that are typical

for school based research in which students are nested within classes or schools (e.g., the

reanalysis of the High School and Beyond data , Lee, 1986). We hoped to determine under

what conditions the analysis is very reactive to the sort of model misspecification that commonly

occurs in naturalistic studies.
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Method

Data were generated according to a two level HLM model. A single true model was

used to generate the data. Features of the second-level model were varied in several ways;

characteristics of the first-level of the model were not varied. The basic model contained two

predictors at the first-level and three predictor variables at the second-level. In order to

increase the relevance of the study, parameters of the basic model were similar to those

obtained by the authors in an empirical HLM analysis of the High School and Beyond

(Coleman, Hoffer & Kilgore, 1982) data.

Design

The chief variable of interest was the specification of the second-level HLM model for

analysis. In generating the data, four other 'nuisance variables" were manipulated, due to their

high salience. The independent variables were:

1) Sample composition (5 levels). This factor was jointly determined by the number of

subjects within a group and the nuMber of groups. The number of subjects and number

of groups were manipulated to defme 5 conditions such that the expected total number

of subjects was 1500 for each data set: (a) 10 groups with an average of 150 subjects in

each group; (b) 25 groups with an average of 60 subjects in each group; (c) 60 groups

with an average of 25 subjects in each group; (d) 150 groups with an average of 10

subjects in each group; and (e) 300 fgoups with an average of 5 subjects in each group.

2) The heterogeneity of the number of subjects within a group (2 levels)-- low and high

heterogeneity.

3) The correlation between second-level predictors, W (2 levels)--0.30 and 0.60.
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4) The intraclass correlation of the observations (2 levels)--0.30 and 0.60.

5) Specification of the model for HLM analysis (9 levels)--the correctly specified model and

eight types of misspecification, including errors of omission and erroneous inclusion of

effects. These models are schematically presented in Table 1.

The first four factors were fully crossed to yield 40 conditions. Twenty data sets were

generated for each condition, according to the procedure given below. Each data set was then

analyzed according to the 9 model specifications indicated in Table 1, yielding a total of 7200

HLM analyses.

Insert Table 1 about here

Data Generation

To simplify the presentation, we have modified the usual HLM two-level model notation.

Particularly, in discussing the second-level equations, some of the usual the notation associated

with the first-level model is suppressed.

The first step in generating the data was to generate the group (second) level data. For

each group, the vector of group level parameters iii was generated according to equation (2). To

simplify the study, the second-level effects W were sampled from an appropriate distribution, the

parameters of which were chosen to be similar to the 1988 HSB data:
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=

W N(0, E)

1 p p
E = [pip

p p 1

N(0, t)

6.6 -1.5 1.2

-1.5 9.4 -1.6

1.2 -1.6 2.5

where p was determined by the value of the third design factor, the correlation between the

second-level predictors. The second-level effects were specified:

= 10.07 + 15.27 W1 + 5.51 W2 +

131 = 17.52 1.56 W2 + 5.59 W3 + U2

P2 = 3.69 + U3

(4)

(5)

The next step was to generate the subjects within groups (first-level data). For a given

sample composition, the corresponding average number of subjects per group was used. For

each group, the ni was sampled as the nearest integer from a modified beta distribution, B(r,$):

n (B(r, s) + 0.5) ( 6)

with r equal to s. Thus, group size ranged from 0.5 to 1.5 times the average number of subjects

per.goup. The parameters r and s were chosen according to the heterogeneity condition,

r =s=1 (uniform distribution) for the high heterogeneity condition and r=s=4 (peaked,
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r=s= 1 (uniform distribution) for the high heterogeneity condition and r=s=4 (peaked,

symmetric distribution) for the low heterogeneity condition.

Finally, the outcome variable was generated for each subject in each group according to

equation (1). As was the case for the second-level data, the fixed effects X were sampled from

a normal distribution, the parameters of which were chosen to be similar to the 1988 HSB data:

X - N(0,A)

A =
{ 1 . 0 0.21

0 . 2 1. 0

(7)

and the individual errors R were iid, sampled from a N(0,o-2) distribution. The first-level error

variance was determined from the intraclass correlation pl and the second-level variance of 130,

711:

2 /.11 (8)

Data were generated by a FORTRAN 77 program written by one of the authors.

Uniform pseudo-random numbers were generated using the algorithm by Wichman and Hill

(1982). Univariate normal deviates were obtained by transforming uniform deviates with the

inverse normal distribution function transformation of Beasley and Springer (1977).

Multivariate normal variables were obtained by generating independent normal deviates, and

then multiplying by the Cholesky decomposition of the desired population covariance matrix.

Beta deviates (for sampling ni) were obtained by transforming a pair of gamma deviates, using

the algorithm given in Press, Flannery, Teukolsky, and Vetterling (1989).
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For group j, n first-level observations were generated according to equation (1). The

sufficient statistics (sums and sums of squares and cross-products) were then calculated for that

group.' Finally, the sufficient statistics for each group were written to a binary file for input

into the HIM program.

Dependent Variables

We wanted to assess the recovery of two different types of parameters, the second-level

regression coefficients 7, and the variance components 0-2 and T. In the first case, we were

concerned with the discrepancy between the estimated and true values of 7. In predicting i3q,

the discrepancy was measured by the euclidean distance between the estimated vector and the

true vector.

d=
m=0

(?mq ymg) 2 (9)

For misspecified models, non-zero elements of 7 which were constrained to be zero (i.e., errors

of omission) were excluded from the distance.

The second focus of interest was the accuracy of estimates of the variance components,

the covariance matrix of second-level errors T, and the residual variance a2. In the context of

predicting a single effect 13q, we can differentiate between Tqq, the error variance associated with

that effect, and errors associated with other effects, To t,ll q. For comparing submatrices of

While generating the sufficient statistics directly might have been more efficient, it was felt that the method
used here was safer. Generating sufficient statistics directly relies heavily on the distributional properties of the
generating algorithm. Generating individual level data and then computing means and covariances from that data
allows the central limit theorem to function. This acts to strengthen the distributional properties of the
generating algorithms



the 7 matrix, the root mean square residual was used:

E E tu) 2
RMR * g

tit C, u*ei

p(p4-1) / 2

A simple bias measure was used for a single parameter 0 (a2 or rqq):
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(10)

be = 0 . (13.)

Analyses

To summarize the results, separate factorial analyses of variance were conducted with

each outcome measure serving as the dependent variable. The independent variables were the

design factors used to generate the data. Due to the nature of the dependent variables, there is

every reason to expect that the assumptions underlying the ANOVA significance test will be

violated. A practical criterion of effects accounting for three or more percent of the variance

was adopted in favor of traditional significance testing. The statistic computed to assess

practical significance was n2 (e.g., Tabachnick & Fidell, 1983),

SSeffect
SS r,

(3.2)

Results

The results of the study are presented in four sections. First, we characterize some

general aspects of the behavior of the HLM program. Specifically, we examine the occurrence

of convergence, problems encountered during iteration, and the number of iterations required to

I .0
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yield convergence. Second, we consider the estimation of the first-level error variance, e.

Because this parameter seemed particularly insensitive to manipulations, this analysis is broader

than those of 7 or 7. Next, we consider the ability of the HLM program to recover the

generating model for 7 or 7. Because any discussion of misspecification is relative to behavior

of the correctly specified model, we examine various aspects of this model in some depth.

Finally, we consider the effects of several types of misspecification at the second-level of the

model.

Behavior of the HLM Program

A) Convergence

Using the default HLM criterion for convergence, we were able to obtain a converged

HLM solution for every run in the study. However, several runs exhibited some problems

during iteration. These problems fell into two broad categories: problems with the automatic

start values, and non-positive defmite estimates of the 7 matrix during the course of iterations.

Accepting the "automatic fix-up," when prompted by the program, was uniformly successful in

solving the problem of start values.

Problems with non-positive defmite estimates of 7 proved somewhat more difficult to

handle. Our procedure was to attempt the HLM automatic fix three times. In the majority of

cases, this procedure proved successful in yielding a converged solution. In a minority of cases,

three attempts using the automatic fix were not successful. In these cases, we next selected the

option of setting 7 to be diagonal. Our batch program allowed this fix to be tried three times as

well. However, it was never necessary to attempt it more than twice in order to yield a

converged solution.

0
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B) Number of Iterations

Bryk and Raudenbush (1992) suggest that the number of iterations may be used as a

rough guide to the adequacy of the model. In particular, they suggest that poorly defmed

models may require very large numbers (i.e., > 100) of iterations to converge, while good

models typically converge quickly. The vast majority of runs converged in under 30 iterations,

and over 99% of the runs had converged by the 60th iteration.

Longer runs were associated with small sample sizes at one of the levels of the model.

Fifteen runs required over 100 iterations to converge. All of these long runs occurred for the

300 groups, 5 per group condition. An additional 80 runs from this condition required between

51 and 100 iteration to converge. The second most common condition with longer runs

consisted of data sets containing 10 groups with an average of 150 per group; 6 runs required 51

to 100 iterations to converge. The remaining conditions never required more than 50 iterations

to converge. Long runs ( > 100 iterations) were not strongly associated with any particular

model specification; each model specification yielded at least one long run. It should be noted

that these results may be influenced by the strategies described above for dealing with problems

encountered during estimation.

In an attempt to further characterize long runs, we examined the value of the likelihood

function at the start of iterations and at convergence. If the difference between these two values

is small, a large number of iterations indicates that the tikelihood function is relatively flat, a

condition associated with a poorly defined model. On the other hand, if the difference is large,

the large number of iterations indicates that the starting values functioned relatively poorly, and

that HLM required a large number of iterations because estimation started a long way from the

final solution. Table tabulates the average value of the likelihood functions at the first
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iteration and at convergence for long and short runs. These results support the hypothesis of

poor start values; the value of the likelihood is much smaller at the first iteration of long runs,

but closer to that of short runs at convergence. However, on average, long runs yield somewhat

lower likelihood values than do short runs. The average number of fix-ups for the starting

values is also higher for long runs than for short runs. While part of this effect may be due to

the strategy we adopted for restarts, there does appear to be some evidence that large numbers

of iterations are associated with poor stirt values.

Insert Table 2 about here

Overall, however, the HLM program functioned well. The vast majority of runs

converged rapidly and without problems. Where problems with starting values occurred,

automatic fix-ups were successful in yielding convergence. Problems during iteratioA and long

runs were associated with small sample sizes at one of the levels of the model.

Estimation of 02

Preliminary analyses indicated that a2 was estimated accurately across a wide range of

model specifications and conditions. The average value of a2 was 9.90, and the overall bias in

estimating 02 was 0.007. To determine whether any factors in the study affected the estimate,

we performed a five-way factorial ANOVA, with the design factors as independent variables and

b., the bias in the estimate of a2, as the dependent variable. The estimation of a2 was not

substantially affected by any of the design factors; n2 for the largest effect is less than .01 and

the entire model only accounts for five percent of the variance in a2. Further evidence of the

stability of a2 is given by its small mean squared error. Ignoring the presence of the design

factors, the mean squared error of c? is 0.259, compared to its overall mean of 9.90.

1. 6
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Based on these results, ci" may best be viewed as a characteristic of the first-level of the

HLM model. Because our study was designed to examine the effect of various aspects of the

second-level of the model, while holding the first-level constant, it is not surprising that we found

no effects for a2.

Recovery of the Correctly Specified Model

A logical prerequisite to discussion of misspecification is a good understanding of how

HLM functions when the model is correctly specified. Discussions of parameter estimate bias,

or mean squared error, under misspecification are only meaningful in comparison to the

behavior of the same quantities for the correct model.

Overall, the recovery of the parameters of the correct model was excellent. Table 3

indicates that the point estimates of 7 were virtually unbiased for the correct model. Estimates

of the second-level error variance r also functioned very well. The small amount of bias that

was present for specific elements does not appear to follow any pattern.

Insert Table 3 about here

Estimation of -y and T

To investigate the effect of the design manipulations, separate factorial ANOVAs were

performed for the dependent variable d (the euclidean distance between the observed and

generating 7 matrices) and RMR (the root mean square residual between the observed and

generating T matrices).2 The results indicated that the sample composition had a large effect on

2 The two measures d and RMR are both based on sums of squared differences. RNIR is divided by the
number of unique elements in the sum, while d is not. Different measures are used in an attempt to reinforce
which parameter matrix, 7 or T, is being discussed.

;-)
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both dependent variables. None of the other factors had a substantial (2 .03) effect on

either dependent variable.

Table 4 gives the mean d and RMR for each sample composition (identified by the

number of groups), as well as the mean for each of the 7 and r coefficients. There are no clear

patterns in the results for individual parameters. On the other hand, both d and RMR declined

monotonically as the number of groups increased, indicating that the quality of the 7 and 7

estimates improved as the number of groups increased. The standard deviations of both d and

RMR also decreased as the number of groups increased. This indicates that the variability in

the quality of the estimates decreased; there were fewer very bad solutions as the number of

groups increased. (Table Al in the Appendix gives results of the full ANOVAs, and Tables A2

and A3 give means for all of the main effects in the design. In general, there was little effect for

any of these manipulations.)

Insert Table 4 about here

Estimates of se(7,n) for the Correct Model

For each of the twenty replications within a cell of the design, the empirical standard

deviation of the estimates was computed (a), as was the average of the standard error estimates

(se). The ratio se/a was formed to evaluate the average accuracy of the estimated standard

error of 7 within each cell. It should be borne in mind that the variance in estimating a2 and 7

is not reflected in the estimate of the variance of the -y's. Mean ratios (averaged over cells) for

the standard error of each of the 7 parameters in the correctly specified model are presented in

Table 5. There is a tendency for standard errors of 7's associated with slopes (as opposed to

base coefficients) to be underestimated by about five to ten percent; standard errors of base

6, U
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terms were overestimated by two to seven percent. Overall, the standard error estimates appear

to function well. However, there was considerable variability in the accuracy of the estimated

standard errors, as is indicated by the relatively large range and standard deviation of the ratios.

Further study of these estimates would appear to be warranted.

Insert Table 5 about here

Effects of Model Misspecification

In examining the effects of model misspecification, we made a distinction between the

incorrect second-level equation (the studied equation) and the other two second-level equations.

For example, in Model D in Table 1, 7,, is erroneously included. Thus, the eqpation predicting

0, is the studied equation. For misspecified models, two distance measures were computed.

The first, dm, (the distance of the vector of 7's from the parameter values for the misspecified

model) was computed over 7's in the studied equation. For example, in Model D, dm, included

'Yu, 72D and 73. Recall that dm, did not include elements of 7 that had been erroneously

constrained to 0; the measure only includes y's that, in principle, could have been estimated

correctly. The second distance measure, dm, was computed over the other two equations. In

Model D, for example, dm, included we, -no, 720, and 702. Similarly, two measures of the r

matrix were computed. The bias measure bm,. (bias in r for the misspecified model) was

computed for the studied equation (rn for Model D, for example). RMRm,, was the root mean

residual computed over the unique elements of T that did not involve the studied equation (for

example, T11? T 131 and r33 in Model D).

As a comparison for a given misspecified model, the distance measure of the

corresponding correctly specified equation, dc was computed. Similarly, the RMR of the
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elements of 7 not in the studied equation, RMRco, was computed for the correctly specified

model. To evaluate the effect of misspecification, the difference was computed between the

misspecified model and the correctly specified model, e.g. difference = dmo - dco. Positive

differences indicate that, on average, the misspecified model was farther from the generating

parameters than the correctly specified model was from the generating parameters. The

difference compares the relative closeness of the two estimates to the true parameters; it does

not provide any direct information about how similar the two solutions were to each other.

Estimates of 7 for the Studied Equation

For each of the nine analyses of a data set, the eucidean distance between the estimated

and generating values of -y for the studied equation, was computed according to Equation (9).

Table 6 summarizes the results of the distance measures for the studied equation. Positive

values indicate that the estimates from the misspecified model were farther from the generating

values than were the estimates from the correctly specified model. Misspecification in the

second-level model leads to estimates of -y that are, on average, farther from the generating

values that are 7 estimates derived for the correct specification. Not all misspecifications are

equal, however. Specifications A and C, which both include errors of omission, are much

farther from the generating values than were models which contained only errors of commission.

This is to be expected; when an effect is omitted, regression coefficients of other, correlated

predictors increase. However, Model E, which also contained an error of omission, did not

show this effect as strongly as did Models A and C.

Insert Table 6 about here
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To examine the effects of the design factors on the distance measures for the studied

equation, separate factorial ANOVAs were performed for each model specification. The design

factors were the independent variables. The difference in the distances, dm, - dc served as the

dependent variable. The criterion n2 .03 was used to identify salient effects. The most

commonly identified effects were the sample composition and the correlation between W's.

Means for these main effects are given in Table 7. In general, as the number of groups

increases, the effect of misspecification decreases. For a few cases, the 300 group condition

yields slightly higher means than does the 150 group condition, but the difference is never large.

As would be expected from standard multiple regession, the effect of misspecification is larger

for a correlation among W's of 0.6 than for a correlation of 0.3.

Insert Table 7 about here

Estimates of 7 for the Other Equations

For each of the nine analyses of a data set, the euclidean distance between the estimated

and generating values of y for the other equations, was computed according to Equation (9).

Table 8 summarizes the results of the distance measures for the other equations. Thus, these

results address the reactivity of second-level regression parameters in the HLM model. If the

model is very reactive, we would expect the distance measures for misspecified models to have

much larger means faan those of the correctly specified model. The results indicate that, for the

misspecifications examined, HLM is not very reactive; only Model E exhibits a significantly

larger distance measure than the correct model. Model A exhibits the pattern to small extent,

but the difference is not statistically significant. On the other hand, all of the other models
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exhibit the opposite pattern; on average, the other elements of 7 are somewhat closer to the

generating parameters for misspecified models than for correctly specified models.

Insert Table 8 about here

To examine the effects of the design factors on distance measures for the other

equations (that do not contain a misspecified 7), separate ANOVAs were performed for each

model. The design factors were the independent variables, and the difference dm. - dc0 served

as the dependent variable. Foi- the majority of models, none of the effects yielded 272 .03. In

the few cases that there was a salient effect, it was always for the sample composition factor.

Means for this main effect are given in Table 9. In general, the 10 groups condition is less like

the correctly specified model thaa are any of the other conditions.

Insert Table 9 about here

Estimates of T for the Studied Equation

Table 10 summarizes the results of the bias measure b, for the studied equation, i.e., the

bias in -r computed from Equation (11). As was the case for 7, the results for the correctly

specified model are also given. In general, the results are as expected. Errors of omission in

the specification of the second-level model (Models A, C and E) lead to estimates of 1 that are

larger than the generating values. Omissions on the intercept term /30 yield much larger

differences (errors of 24-25 times T11) than do errors on 3 which are only about 20 percent of

Tn. On the other hand, misspecified models that contain only errors of commission result in

very little bias in Tim, and yield estimates which are very similar to those derived for the correct

specification.
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Insert Table 10 about here

Separate factorial ANOVAs were performed for each model specification. The design

factors were the independent variables, and the difference l?m, - bc, served as the dependent

variable. The only effect that was identified as having a salient effect was the correlation

between W's. Means for this main effect are given in Table 11. As would be expected from

standard multiple regression theory, the effect of misspecification was smaller when the

correlation was 0.6 than when it was 0.3. When predictors are highly correlated, the effect of

omitting a predictor may be mitigated by increasing the weights of other, correlated predictors.

As the correlation decreases, so does this effect, and errors of omission have correspondingly

larger effects in increasing the error variance.

Insert Table 11 about here

Estimates of T for the Other Equations

Table 12 summarizes the results of the RMR measures for the T's derived from the other

equations, i.e., second-level equations with no misspecified .y's. Thus, these results address the

reactivity of second-level r parameters in the HLM model. If the model is very reactive, we

would expect the RMR measures for misspecified models to have larger means than those of

the correctly specified model. The results indicate that, for the misspecifications examined,

I-ELM is not very reactive. None of the models yield an RMR which is significantly different

from that of the correctly specified model.

Insert Table 12 about here
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Separate factorial ANOVAs were performed for each model specification. The design

factors were the independent variables, and the difference RMRm. - RMRc0 served as the

dependent variable. None of the effects yielded n2 .03 for any of the models.

Discussion

There are several limitations to these results. Probably the strongest limitation was the

use of a single first-level model. This model was chosen to be very similar to an empirical HLM

analysis, and the parameters were chosen to closely resemble a substantitively interesting

examination of the HSB data. Nonetheless, it may be that aspects of the first-level model, such

as the correlation between the first-level predictors, can have a strong influence on our results.

The extent to which our fmdings depend upon the characteristics of that model are unknown at

present; we are currently extending our work along these lines. The use of a single second-level

model is a less serious limitation, as there is little reason to expect our fmdings to be limited to

the specific model used; aspects of this model were varied, and the lack of strong effects for

those manipulations gives us some confidence that our results are not overly limited by this

aspect.

The sample composition had salient (f .03) effects on several of the outcome

measures. The manner in which we manipulated this variable argues against the seemingly

plausible assertion that adding subjects to each group will compensate of a lack of groups.

While this line of reasoning holds for some aspects of hierarchical models (e.g., estimating the

intraclass correlation, Collins, Donoghue & McGuigan, 1989), we found no evidence that it

applies to 1-ILM quantities specifically associated with the second-level moC-1 such as 7 or 7.

2
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Bryk and Raudenbush (1992) have discussed this characteristic of HLM; our results support

them.

Two of the manipulations, the value of the conditional intraclass correlation and the

heterogeneity of group sizes, had no large effects for any of the dependent variables we

examined. These fmdings differ from those of Bassiri (1988), who found effects for both of

these manipulations. It is not known whether this discrepancy is due to differences in

methodology, or is a function of the specific model specifications used in the two studies.

Further res.:arch will be required to determine the answer to this question.

One limitation of our results is a failure to identify conditions under which HLM clearly

broke down. Our design was selected to span a range of commonly occurring situations in

educational research. Little was known about the behavior, especially reactivity, of .HLM across

this range. It was reassuring to find that the progam functioned well across this range.

Nonetheless, knowledge about where the model clearly breaks down would also be valuable.

In general, our results are very encouraging. HLM estimates were unbiased for the

correctly specified model, and showed expected patterns of results for parameters associated

with the equation which was directly affected by the misspecification. Moreover, we saw little

evidence of reactivity, despite HLM's use of full information techniques of estimation. The

extent to which our fmdings may be extended to other HLM designs is not clear. Certainly

further research along these lines is warranted.
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Table 1

Symbolic Specifications of Models Used
(Error Terms are Omitted from the Equation's for Clarity)3

Correct Model

Po Yoo y10W1 Y2oW2

Pi Yoi Y21W2 Y31W3

P2 = YO2

Correct:

Model A:

Model B:

Model C:

Errors in go

Yoo

' Yoo 110W1

= loo YlOW1

= Yoo YlOW1

Y20W2

Y20W2

Y20W2

Y20W2

Y30W3

130W3

Errors in 131

Correct: 01 Yoi Y21W2 Y31W3

Model D: 131 = Yo1 Wl Y21W2 Y31W3

Model E: 131 4" y11W1 Y21W2 Y31W3

Errors in fl2

Correct: 132 = YO2

Model F: 132 = Y 02 112W1

Model G: 132 = YO2 Y32W3

Model H: 132 102 Y12W1 Y32W3

3 Crossed out terms indicate effects which are incorrectly omitted. Underlining indicates effects which are
incorrectly added.
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Table 2

Characteristics of Long Runs (Iter. > 100)

N
Mean Start

log
Likelihood

Mean Finish
log

Likelihood

Mean
difference

(Start-Finish)

Percent Fix-
ups for Start

Values

Long Runs 15 -4830.91 -4301.87 529.04 100.0

Short
(NG = 300)

1425 -4396.36 -3970.06 426.30 85 8

All Other
Short Runs

5760 -3871.67 -3871.39 0.28 0.2
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Table 3

Mean Parameter Estimates for Correctly Specified Model

Parameter
Mean

Estimate
Generating

Value Bias MSE

70 10.04 10.07 -0.03 .268

710 15.28 15.27 0.01 .713

7-1) 5.54 5.51 0.03 .619

70i 17.52 17.52 0.00 .372

7 -1.53 -1.56 -0.02 .545

I'm 5.57 5.59 -0.02 .616

3.70 3.69 0.01 .081

T3.1
6.61 6.60 0.01 5.388

t23.

-1.44 -1.50 0.06 3.347

T22
9.51 9.40 0.11 8.645

t31
1.21 1.20 0.01 1.011

'c 32
-1.62 -1.60 -0.02 1.188

T .33

2.49 2.50 -0.01 0.527

0 2
9 91 9.90* 0.01 0.259

*This is an average vak. fhe actual values depends upon the condition de ming the value of the
intraclass correlation. For Di = 0.3,E(o2) = 15.4,and for pi = 0.6,E(a2) = 4.4.
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Table 4

Mean Parameter Estimates for Correct Model by Sample Composition, Identified by the Number of Groups

Number of Groups

10 25 60 150 300

lloo 9.88 10.05 10.11 10.09 10.07

710 15.28 15.34

..4

15.22 15.24 15.26

"Yzo 5.58 5.51 5.55 5.54 5.52

101 17.60 17.48 17.52 17.50 17.52

72.1 -1.64 -1.54 -1.61 -1.57 -1.55

731 5.68 5.44 5.57 5.59 5.56

702 3.73 3.67 3.70 3.70 3.70

1:!1
6.78 6.60 6.57 6.60 6.51

v21 -1.31 -1.42 -1.40 -1.53 -1.55

s22 9.12 9.77 9.60 9.61 9.44

'c
31

1.16 1.21 1.22 1.23 1.24

sn -1.63 -1.49 -1.68 -1.61 -1.61

t33
2.40 2.4.6 2.53 2.52 2.54

Mean d 3.04 1.54 1.00 0.65 0.52

Std. 1.54 0.51 0.32 0.21 0.14

Mean RMR 2.90 1.63 1.08 0.76 0.70

Std. 1.60 0.70 0.42 0.31 0.32
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Table 5

Descriptive Statistics for Ratio:
(Mean of Estimated se(y)) / (Observed Standard Deviation of ymq Estimates);

Computed for Correctly Specified Model

Parameter Mean
Standard
Deviation Minimum Maximum

No 1.024 0.179 0.688 1.464

0.905 0.235 0.406 1.328

0.957 0.202 0.404 1.385

1.056 0.187 0.702 1.446

72.1 0.960 0.163 0.702 1.339

731 0.963 0.208 0.498 1.299

1.072 0.215 0.752 2.070
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Table 6

Average Distance of Elements of y from the Generating Values
for Correct and Incorrect Model Specifications: Studied Equation

dms (le, difference 1099) P

130 is Studied
Equation

Model A 7.65 0.84 6.80 61.29 .0001

Model B 1.09 0.84 0.24 12.45 .0001

Model C 8.06 0.84 7.21 66.46 .0001

is Studied
Equation

Model D 1.24 0.92 0.31 9.33 .0001

Model E 1.31 0.92 0.38 13.81 .0001

132 is Studied
Equation

Model F .0.34 0.21 0.14 20.86 .0001

Model G 0.35 0.21 0.14 19.10 .0001

Model H 0.31
,

0.21 0.14 20.31 .0001
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Table 7

Means for Salient Main Effects on Difference in Average Distance of Elements of 7 from
the Generating Values for Correct and Incorrect Model Specifications

for Studied Equation (dm, -
Sample Composition (Identified by the Number of Groups) and

Correlation between Second-level Predictors

Model

1110 is Studied Equation 13, is Studied
Equation

132 is Studied Equation

Model
A

Model
B

Model
C

Model
D

Model
E

Model
F

Model
G

Model
H

Number of Groups

TO 7.34 0.64 9.31 0.82 0.37 0.25 0.21 0.64

25 6.64 0.24 7.27 0.39 0.42 0.17 0.16 0.35

60 6.66 0.14 6.64 0.16 0.34 0.12 0.09 0.22

150 6.70 0.11 6.42 0.13 0.37 0.07 0.08 0.15

300 6.70 0.08 6.42 0.08 0.41 0.07 0.07 0.14

Correlation between
Second-level
Predictors

0.3 5.05 0.24 6.24 0.23 0.34 0.14 0.15 0.28

0.6 8.56 0.24 8.19 0.40 0.43 0.14 0.13 0.32
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Table 8

Average Distance of Elements of y from the Generating Values
for Correct and Incorrect Model Specifications: Other Equations

610 dc0 difference t(799) P

A, is Studied
Equation

Model A 1.021 0.965 .056 1.76 .0788

Model B 0.945 0.965 -.020 -2.28 .0227

Model C 0.947 0.965 -.018 -2.04 .0419

(31 is Studied
Equation

Model D 0.858 0.892 -.034 -3.21 .0014

Model E 0.992 0.892 .030 2.31 .0209

132 is Studied
Equation

,

Model F 1.302 1.320 -.018 -2.487 .0131

Model G 1.316 1.320 -.003 -0.467 . .6407

Model H 1.297 1.320 -.023 -2.005 .0453
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Table 9

Means for Salient Main Effects on Difference in Average Distance of Elements of y from
the Generating Values for Correct and Incorrect Model Specifications

for Other Equations (dm. - dc.):
Sample Composition (Identified by the Number of Groups)

Number of
Groups

00 is Studied Equation 13, is Studied
Equation

(12 is Studied Equation

Model
A

Model
B

Model
C

Model
D

Model
E

Model
F

Model
G

Model
H

10 0.189 -.084 -.082 -.163 0.059 0.312 -.028 -.117

25 0.049 -.011 -.011 -.000 0.036 0.160 -.002 -.011

60 0.008 -.001 -.001 -.005 0.018 0.093 0.008 0.003

150 0.018 -.001 -.001 -.000 0.019 0.077 0.004 0.006

300 0.019 -.002 0.007 -.001 0.019 0.071 0.002 0.004
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Table 10

Aveiage bias in veil for Correct and Incorrect Specifications

bra, bc, difference 1(799) P

(30 is Studied
Equation

Model A 178.67 0.012 178.66 85.26 .0001

Model B 0.002 0.012 -0.009 -0.29 .7739

Model C 163.396 0.012 163.38 77.47 .0001

01 is Studied
Equation

Model D 0.142 0.108 0.034 0.80 .4213

Model E 1.791 0.108 1.684 20.78 .0001

112 is Studied
Equation

Model F -0.001 -0.009 0.008 1.38 .1669

Model G 0.001 -0.009 0.010 1.38 .1692

Model H 0.014 -0.009 0.023 1.96 .0506
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Means for Salient Main Effects for ANOVA on Difference in
Average bias in su for Correct and Incorrect Specifications:

Correlation between Second-level Predictors

Correlation
between

Second-level
predictors

130 is Studied Equation 61 is Studied
Equation

62 is Studied Equation

Model
A

Model
B

Model
C

Model
D

Model
E

Model
F

Model
G

Model
H

0.3 210.5 -0.04 199.5 0.01 2.12 0.01 0.01 0.02

0.6 146.8 0.02 127.3 0.06 1.25 0.01 0.01 0.02

t
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Table 12

Average RMR between Elements of Estimated and Generating 7,
Values for Correct and Incorrect Model Specifications: Other Equations

RMRc. difference 1(799)

(30 is Studied
Equation

Model 1.551 1.398 0.154 1.12 .2635

Model B 0.399 1.398 0.001 0.17 .8865

Model C 1.407 1.398 0.009 1.78 .0758

(31 is Studied
Equation

Model D 1.011 1.045 -0.034 -1.83 .0677

Model E 1.055 1.045 0.010 0.87 .3829

(32 is Studied
Equation

Model F 1.772 1.796 -0.024 -1.62 .1055

Model 0 1.793 1.796 -0.004 -0.41 .6823

Model H 1.761 1.796 -0.035 -1.88 .0610
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Table Al

Analysis of Variance of Distance Measure d and RMR for Correctly Specified Model

RMR

Effece df SS SS n

s 4 668.58 .600 531.83 .494

D 1 0.01 .000 1.11 .001

c 1 10.77 .010 0.23 .000

I 1 2.48 .002 0.28 .000

s 4 0.11 .000 3.84 .004

S*C 4 18.38 .017 1.58 .001

PI 4 0.80 .001 6.94 .006

D*C 1 0.12 .000 0.00 .000

D*I 1 0.19 .000 0.51 .000

C*I 1 0.01 .000 0.34 .000

S*D*C 4 0.36 .000 3.13 .003

S*D*I 4 0.72 .001 2.84 .003

S*cn 4 2.57 .002 0.81 .001

D*C*I 1 0.23 .000 1.66 .002

S*D*C*I 4 0.16 .000 2.88 .003

Error 760 408.17 517.88

Total 799 1113.68 1075.85

Abbreviations used for effects: S-Sample composition, D-Heterogeneity of the within-group sizes, C-
Correlation between the second-level predictors, I-value of the intraclass correlation conditional upon the
model.
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Appendix A2

Means and Standard Deviations of d for Main Effects, Correctly Specified Model

Heterogeneity Mean sd

Low 1.35 1.13,
High 1.35 J... 1.23

_
Correlation between

Second-level Predictors Mean sd

.3 1.23 0.95

.6 1.46 1.36

Intraclass Correlation Mean sd

.3 1.40 1.25

.6 1.29 1.10

Sample Composition (Identified
by the Number of Groups) Mean sd

10 1.23 1.54

25 1.54 0.51

60 1.00 0.32

150 0.65 0.20

300 0.52 0.14
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Appendix A3

Means and Standard Deviations of RMR for Main Effects, Correctly Specified Model

Heterogeneity Mean sd

Low 1.38 0.96

High 1.45 1.33

Correlation between
Second-level Predictors Mean sd

.3 1.40 1.04

.6 1.43 1.27

Intraclass Correlation Mean sd

.3 1.43 1.13

.6 1.40 1.19

Sample Composition (Identified
by the Number of Groups) Mean sd

10 2.90 1.60

25 1.63 0.70

60 1.08 0.42

- 150 0.76 0.31

300 0.70 0.32

4,1


